Inference and optimization of real edges on sparse graphs: a statistical physics perspective.
نویسندگان
چکیده
Inference and optimization of real-value edge variables in sparse graphs are studied using the Bethe approximation and replica method of statistical physics. Equilibrium states of general energy functions involving a large set of real edge variables that interact at the network nodes are obtained in various cases. When applied to the representative problem of network resource allocation, efficient distributed algorithms are also devised. Scaling properties with respect to the network connectivity and the resource availability are found, and links to probabilistic Bayesian approximation methods are established. Different cost measures are considered and algorithmic solutions in the various cases are devised and examined numerically. Simulation results are in full agreement with the theory.
منابع مشابه
On the variable sum exdeg index and cut edges of graphs
The variable sum exdeg index of a graph G is defined as $SEI_a(G)=sum_{uin V(G)}d_G(u)a^{d_G(u)}$, where $aneq 1$ is a positive real number, du(u) is the degree of a vertex u ∈ V (G). In this paper, we characterize the graphs with the extremum variable sum exdeg index among all the graphs having a fixed number of vertices and cut edges, for every a>1.
متن کاملSpectral Inference Methods on Sparse Graphs: Theory and Applications
In an era of unprecedented deluge of (mostly unstructured) data, graphs are proving more and more useful, across the sciences, as a flexible abstraction to capture complex relationships between complex objects. One of the main challenges arising in the study of such networks is the inference of macroscopic, large-scale properties affecting a large number of objects, based solely on the microsco...
متن کاملExchangeable Random Measures for Sparse and Modular Graphs with Overlapping Communities
Abstract: We propose a novel statistical model for sparse networks with overlapping community structure. The model is based on representing the graph as an exchangeable point process, and naturally generalizes existing probabilistic models with overlapping block-structure to the sparse regime. Our construction builds on vectors of completely random measures, and has interpretable parameters, ea...
متن کاملSparse graphs using exchangeable random measures
Statistical network modelling has focused on representing the graph as a discrete structure, namely the adjacency matrix. When assuming exchangeability of this array-which can aid in modelling, computations and theoretical analysis-the Aldous-Hoover theorem informs us that the graph is necessarily either dense or empty. We instead consider representing the graph as an exchangeable random measur...
متن کاملFactor Graphs for Robot Perception
We review the use of factor graphs for the modeling and solving of large-scale inference problems in robotics. Factor graphs are a family of probabilistic graphical models, other examples of which are Bayesian networks and Markov random fields, well known from the statistical modeling and machine learning literature. They provide a powerful abstraction that gives insight into particular inferen...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Physical review. E, Statistical, nonlinear, and soft matter physics
دوره 76 1 Pt 1 شماره
صفحات -
تاریخ انتشار 2007